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1 Introduction

Although mammography is a valuable screening tool for breast cancer, it is less effective
in younger women (≤ 40 years), usually because the higher density of their breasts can
obscure tumors. While the incidence of cancer in younger women is relatively low, it is still
significant: an estimated 13,000 women under 40 will be diagnosed with breast cancer this
year. Further, cancers in this age group tend to be more aggressive, and survival rates are
lower. In light of these observations, there is need for an effective screening technique to
complement clinical and self breast exams. In addition, the lack of a specific early detection
screening protocol for young women is particularly disquieting to those at elevated risk.

Elasticity Imaging (EI) [1] is a technique that could potentially assume this role, as it
relies on extracting information from ultrasound images which are in turn unaffected by the
denseness of the breast. The application of EI to breast cancer detection (see [2] for example)
utilizes the fact that breast tumors tend to be significantly stiffer than the surrounding
tissue [3], and can be easily discerned in an image that represents the spatial variation of
stiffness properties [4]. Measurements for EI can be made by only slightly modifying the
protocol for a typical sonogram, and involve recording ultrasound images of the breast as
it is deformed, and registering these images to produce a displacement field. Using this
displacement field, and an assumed linear elastic model for the tissue, an inverse problem
is solved to compute the spatial variation of the elastic modulus. Thus EI yields additional
information about the tissue (elastic modulus) at little or no extra clinical cost.

While several clinical studies are currently underway to assess the utility of EI as a
screening tool, we believe that in order to realize its true diagnostic potential the assumption
of linear elasticity within EI must be replaced by a more realistic non-linear model. In
particular, producing images of material parameters E (the elastic modulus at zero strain)
and m (the degree of non-linearity of tissue) for a non-linear model where the stress (σ)
is expressed in terms of the strain (ǫ) as, σ = (E/m)(emǫ − 1), will allow for a clearer
differentiation of several important tissue types. For example, it is difficult to distinguish a
ductal carcinoma in-situ from a phyllodes tumor based on E alone (since the ratio is about
1.1), while it should be relatively easy to do so based on m (the ratio is about 2). The
opposite holds for an infiltrating ductal carcinoma and an intraductal papilloma, where the
ratio of E is about 2.1, and the ratio of m is 0.93 (values taken from [3]). By replacing the
linear response in the inverse problem in EI with a more informative and accurate non-linear
response we propose to generate multiple, quantitative images which provide complimentary
information about the tissue, instead of a single elastic modulus image.

It is well known that the microvasculature vascular density is a strong predictor of
prognosis in cancerous tissue. It can be show that this quantity is directly related to the
microvascular filtration coefficient, which determines the rate at which fluid is carried away
in the vascular compartment and hence the rate at which the tissue relaxes to an applied
load. Recently, a biomechanical model which accounts for this fluid transport mechanism
and the corresponding relaxation has been proposed [5]. Using this model we now wish to
verify whether the strain relaxation of tissue due to fluid transport is sufficiently large to
be measured by standard elastography techniques. Our hypothesis is that if this spatio
temporal relaxation of strain can indeed be measured using elastography, then an inverse
algorithm can be designed based on the biomechanical model of Netti et al., which will yield
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the distribution of the microvascular filtration coefficient in the tissue. This approach may
offer another exciting avenue for the application of elastography to cancer detection.

2 Body

The research carried out under this grant is divided into two components. One deals with
the extension of elastography to non-linear elasticity imaging and the other aims to ascertain
whether elasticity imaging can be used to determine the microvascular filtration coefficient
(MFC).

2.1 Nonlinear Elasticity Imaging

Our long term goal is to develop and test an ultrasound-based methodology for generating
multiple-parameter, high-contrast elasticity images of breast tissue for improved diagnosis
and detection of breast cancer in young women. In the current grant we have obtained proof
of concept results for this technique. Or results are described in detail in Appendix A.

2.2 MFC feasibility study

Here our goal was to determine whether changes in the microvascular filtration coefficient
in cancerous tissue produce detectible changes in strain relaxation patterns, which may be
measured using standard elastography techniques. This research paves the way for using
elastography to determine the spatial distribution of MFC. The results of this research are
described in Appendix B.

3 Key Research Accomplishments

1. Non-linear models for breast tissue: We have demonstrated that the Veronda-
Westmann model [6] has a strain energy term that yields the experimentally observed
exponential stress-strain behavior observed in most breast tissue [3].

2. Algorithms: The use of a non-linear model adds computational complexity to the
inverse problem. We have developed and implemented a quasi-Newton, adjoint
approach to solve this problem.

3. Test problems: Using an in-house suite of computer programs, we have generated
synthetic displacement data (with noise) for tissue models with known elastic
parameters. We have used this data to test the performance of the inversion algorithms,
and the feasibility of the overall approach.

4. Poroelastic model for tissue deformation: We have implemented the model of Netti
et al. in a finite element program in order to simulate the relaxation of tissue due to
vascular drainage and interstitial percolation.
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5. Feasibility Study: We have determined that vascular drainage (as opposed to interstitial
percolation) is the main mechanism of relaxation in most vascular tissue. Through
numerical simulations we have also verified that the increased value of the microvascular
filtration coefficient in cancerous tissue produces changes in strain relaxation patterns,
which may be measured by standard elastography techniques.

4 Reportable Outcomes

4.1 Manuscripts

1. Nonlinear elasticity imaging I: Formulation and computational solution for
compressible media, by Gokhale, N.H., Oberai, A.A., and Barbone, P.E., in

preparation.

2. Nonlinear elasticity imaging II: Using enhanced strain FEM to treat nearly
incompressible media, by Gokhale, N.H., Oberai, A.A., and Barbone, P.E., in

preparation.

3. Nonlinear elasticity imaging III: Inversions in nearly incompressible media by higher
order FEM, by Gokhale, N.H., Oberai, A.A., and Barbone, P.E., in preparation.

4. Nonlinear elasticity imaging in tissue, by Gokhale, N.H., Oberai, A.A., and Barbone,
P.E., in preparation.

5. Coupling between elastic strain and interstitial fluid flow: Ramifications for poroelastic
imaging, by Leiderman, R., Barbone, P.E., Oberai, A.A., and Bamber, J. C., submitted

to Physics in Medicine and Biology.

4.2 Presentations

1. Towards the early detection of breast cancer in young women, DOD Era of Hope
Conference, Philadelphia, June, 2005.

2. Biomechanical Imaging: Querying Mechanical Properties of Soft Tissue, In-vivo,
Seminar at the Department of Mechanical Engineering, Louisiana State University,
Baton Rouge, Feb. 18, 2005.

3. Motion and Deformation Measurement from Image Sequences, Advanced Computation
Seminar Series, Center for Computational Science, BU, 18 March 2005.

4. Inferring Biomechanical Properties from Quasistatic Deformations: An introduction
to associated Inverse Problems. Paul Barbone, Invited Keynote Tutorial, Fourth
International Conference on the Ultrasonic Measurement and Imaging of Tissue
Elasticity, Austin TX, 16 October 2005.

5. Nonlinear Elasticity Imaging, Nachiket Gokhale, Assad Oberai, Paul Barbone. Eighth
US National Congress on Computational Mechanics, Austin TX. 25-27 July 2005.
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6. Progress in Biomechanical Imaging, Mike Richards, Nachiket Gokhale, Carlos Rivas,
Ricardo Leiderman, Assad Oberai, Paul Barbone. 2nd International Conference on
Tumor Progression & Therapeutic Resistance. 18-20 September 2005.

7. Three Dimensional Ultrasound Image Registration and Shear Elastic Modulus
Reconstruction, Mike Richards, Nachiket Gokhale, Carlos Rivas, Ricardo Leiderman,
Assad Oberai, Paul Barbone. Fourth International Conference on the Ultrasonic
Measurement and Imaging of Tissue Elasticity, 16-19 October 2005.

8. Progress in Biomechanical Imaging. Mike Richards, Nachiket Gokhale, Carlos Rivas,
Ricardo Leiderman, Assad Oberai, Paul Barbone. Fourth International Conference on
the Ultrasonic Measurement and Imaging of Tissue Elasticity, 16-19 October 2005.

9. Progress in Quantitative Biomechanical Imaging. Paul Barbone, Mike Richards,
Nachiket Gokhale, Carlos Rivas, Ricardo Leiderman, Assad Oberai. IMA Workshop:
Imaging from Wave Propagation, Institute for Mathematics and its Application, 17-21
October 2005.

10. Nonlinear Elasticity Imaging, Nachiket Gokhale, Assad Oberai, Paul Barbone, ACES
IGERT Review Meeting, 29 September 2005.

4.3 Degrees Obtained

Nachiket Gokhale, PhD. in Mechanical Engineering at Boston University, 2006. Nachiket
will graduate around August 2006.

4.4 Personnel Supported

1. Dr. Assad Oberai (PI)

2. Dr. Ricardo Leiderman (Post-Doc)

3. Nachiket Gokhale (PhD. Student)

4.5 Funding Applied for Based on Work in this Award

Title: Biomechanical Imaging, PI: P.E. Barbone, Boston University, Period:
12/01/0611/30/11, Source: National Institutes of Health Total Amount: 2,574,709.

5 Conclusions

Through the research supported by this award we have developed, implemented and tested
(on synthetic data) an approach to determine the nonlinear elastic properties of breast tissue.
The next logical step will be to test this approach in an experimental setting using tissue
mimicking phantoms and then in a clinical setting. If successful in a clinical setting this
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approach will substantially increase the specificity of quasi-static elastography by offering
more than one parameter with which to distinguish different tissue types.

In addition we have established that the reported variations in microvascular filtration
coefficient (MFC), which is a strong predictor of prognosis in cancerous tissues, lead to
significant changes in strain relaxation. Further, these changes in strain relaxation are
large enough so that they may be detected using standard ultrasound-based elastography
techniques. This motivates the development of an imaging modality based on quantifying
the spatial variation of MFC which could play a significant role in cancer detection.
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Iterative solution of the non-linear inverse elasticity

problem

Nachiket H Gokhale §, Paul E Barbone and Assad A Oberai ‖

Department of Aerospace and Mechanical Engineering, Boston University, Boston,

MA 02215,USA

Abstract. We discuss and solve an inverse problem in non-linear elasticity imaging

in which we recover spatial distributions of hyperelastic material parameters from

measured displacement fields. This problem has applications to elasticity imaging of

soft tissue because the strain dependence of the material parameters may potentially

be used to differentiate between malignant and normal tissues. We account for the

geometric and material non-linearity of the tissues by assuming a known hyperelastic

model for the soft tissue. We formulate the problem as a minimization problem.

The cost function represents the difference between the measured and predicted

displacement fields. We minimize it with respect to the spatial distribution of material

properties. We solve the minimization problem by a gradient based (quasi Newton)

optimization approach. We calculate the gradient efficiently using the adjoint method.

We present numerical examples that demonstrate the feasibility and efficiency of the

approach, and compare it to linear elastic reconstructions.

1. Introduction

Elasticity Imaging (EI) is an emerging medical imaging technique in which images of

the spatial distribution of the elastic modulus or stiffness of soft tissues are created.

The motivation and interest for persuing this goal are numerous. For example, it is well

known that pathologies affect the mechanical properties of soft tissue. This is evident

in breast, prostate and other tumors presenting as hard lumps, in fibrosis which is

associated with a diffuse stiffening, and atherosclerosis, which means literally, hardening

of the arteries. There is also interest in being able to evaluate the normal properties

of many tissues whose function is primarily mechanical, such as lungs, blood vessels,

muscles, (including cardiac muscle), and cartilage. Furthermore, there is now strong

evidence that phenotypical cell behaviors depend relatively strongly on the mechanical

properties of their immediate environments [1]. Finally, technological applications such

as automated needle insertion [2] or surgical planning and simulation would benefit from

patient specific a priori or even real time mechanical characterization of soft tissues.

The typical procedure followed for elasticity imaging is:

§ To whom correspondence should be addressed (gokhalen@bu.edu)
‖ At Rensselaer Polytechnic Institute, Troy, NY, from January 2006



10Iterative solution of the non-linear inverse elasticity problem

(i) Tissue Deformation and image acquisition: The soft-tissue of interest is imaged

while it is deforming. The source of the deformation in general may be external

(e.g. manual palpation) or internal (cardiac motion). The deformation may be

quasi-static or transient.

(ii) Image Processing: The displacement field is calculated from the acquired images,

by using either correlation based algorithms, or minimization of a suitable objective

function [3].

(iii) Inverse Problem Solution: The spatial distribution of the material properties is

calculated from the known (i.e. measured) displacement field. An appropriate

mathematical model for the tissue deformation is selected depending upon the

spatio-temperal scales of the applied deformation and the imaging system. Given

the forward mathematical model and measured deformations, an inverse problem

thus follows. In this paper, an efficient formulation based on the adjoint formulation

is used to solve this inverse problem.

Thus, elasticity imaging involves the solution of the following inverse problem: Given

the displacement field in an elastic body, calculate the spatial distribution of material

properties (stiffness). Most approaches used in the literature to image the stiffness [4–10]

assume that the tissue can be modeled as a linear incompressible isotropic elastic solid.

The goal then is to recover the shear elastic modulus distribution of the soft tissue.

The linear elastic model, of course, can accurately predict small strain deformations.

There are two expected practical advantages, however, to using large strains in elasticity

imaging. One is that the signal-to-noise ratio of the measured deformations tends to

increase with deformation magnitude. In this case, even if the stress-strain response of

the tissue remains linear over the range of strains measured, the error due to geometric

nonlinearity (by this, we mean the neglect of the nonlinear terms in the exact definition

of strain [11] can become significant. The second advantage is the potential to measure

the nonlinear behavior of the tissue itself. This behavior is itself relevant to the

physiological functioning of several tissues (e.g. arterial walls, cartilage), and may be

useful in distinguishing potentially cancerous lesions. It is the latter application that

directly motivates our development.

The evidence in [12, 13], for example, indicates that the degree of non-linearity in the

stress-strain relationship of soft tissue may be an indicator of the underlying histology.

In [12], the mechanical properties of soft tissue samples of the breast collected from

patients during surgery were studied using indentation tests at various strain levels.

The authors estimated the elastic moduli at various strain levels and found that the

cancerous and benign breast tissues have significant differences in the rate of increase

of stiffness with strain. The authors of [13] tested the mechanical properties of both

breast and prostate tissues at three different strain rates and strain levels. They also

found that cancerous tissues are much stiffer at a higher strain level as compared to

fat or normal glandular tissue. Both [12, 13] make their measurements at times scales

associated with quasi-static elasticity imaging (≈ 0.1 Hz− 10 Hz), and report negligible
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viscoelastic effects. That is, the observed elastic modulus is independent of loading

frequency. Of these various applications, our primary motivating application is breast

imaging, with the aim of ultimately improving detection and differential diagnosis of

breast cancer.

Relatively few attempts have been made to account for non-linear elastic properties

of soft tissue in material property reconstruction [14–18]. Apart from the exception

of [14] only constant hyperelastic parameters are recovered.

In [14] the authors model soft tissue as a linear incompressible elastic material accounting

only for geometric non-linearities. The relation between the stress and strain is linear.

The authors develop an inversion equation for the shear modulus in an integral form

and solve it to recover shear modulus distributions. The displacement fields and strain

components are calculated from ultrasound images of a gel based phantom. Accuarate

results were obtained for recovered shear modulus distributions of these phantoms.

In [15] the authors simulated the deformation of an agar gelatin phantom using a

commercial finite element code and created synthetic RF images of the deformation

of the phantom. Using displacement data calcualted from these images, the relative

strain ratio images were created. Nonlinear effects were observed. That is, at low strain

rates, strain contrast was observed between gelatin (stiffer) and agar (softer). With

increased deformation, the agar stiffened, and became roughly equal to the stiffness of

gelatin. This caused a decrease in the relative strain ratio. With further increase in the

load, greater differentiation is seen between the agar and gelatin. These results point to

the fact that non-linear properties can indeed be used to increase differentiation in soft

tissues. Similar studies were carried out by the authors in [17].

In [16] the authors develop a reconstruction procedure to calculate constant parameters

(or their combinations) in hyperelastic material modls from measured force displacement

curves. The study is performed both for phantoms and simulations. A similar approach

to determine the hyperelastic parameters of breast tissue samples was developed in [19]

and in [18] for fitting hyperelastic models with constant material parameters to Treolar

and Treolar and Jones experiments on natural rubber.

The method presented below was developed and motivated by applications in breast

imaging, with the aim of ultimately improving detection and differential diagnosis of

breast cancer [20]. In these applications the tissue is deformed quasi-statically while it

is being imaged with ultrasound. Image processing yields an estimate of the deformation

pointwise with the tissue, at several “instants” of time. The time scales of the applied

deformations justify the incompessibility assumption and neglect of inertial and viscous

effects [12, 13]. The deformation is typically measured in loading only, and so the

quasi-elastic [21] model is justified. We therefore assume a hyperelastic model of tissue

deformation. The aim is to recover, given the deformation field everywhere in the

solid, the spatial distribution (in the material or reference configuration) of the tissue

parameters that describe the assumed hyperelastic model.
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1.1. Organization of this paper

This paper is organized as follows. We first describe the strong form of the forward

hyperelastic problem in section 2. This serves to introduce our modeling assumptions,

definitions, and field equations. We then present the weak form which leads us to the

discretization and computational solution of the forward problem. The formulation of

the inverse problem follows in section 3. We formulate this as a nonlinear optimization

problem. Essential to its practical solution is the efficient evaluation of the gradient.

We use the adjoint method and a smart iteration-initialization strategy to accomplish

this, as described in section 4. We demonstrate the method on several examples in

section 5. Among the several details discussed are the choice of hyperelastic model,

the choice of the regularization functional, the selection of the regularization constant,

the effect of the magnitude of the applied deformation on the ability to recover the

nonlinear parameters, and the limits and appropriate interpretation of linear elastic

reconstructions in hyperelastic contexts.

2. The Forward problem

2.1. Strong form

In this section we describe the strong form of the equations of equilibrium for a hy-

perelastic solid undergoing finite deformations. In this manuscript, this problem is

referred to as the forward problem of hyperelasticity or simply as the forward problem.

Given appropriate boundary data and the distribution of material parameters inside

the body, these equations may be solved to determine the deformation field φ(X) that

maps every point X in the reference or material configuration to a point x in the cur-

rent or spatial configuration. That is x = φ(X). The displacement field is given by

U (X) = φ(X) − U(X). This is illustrated in figure (1) For a complete treatment of

φ(X)

OCUR 

Ω0 Ω

X
x

Figure 1. The deformation diagram

this problem the reader is referred to [22,23].

The assumption of hyperelasticity implies that there exists an underlying strain energy
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density φ such that

∂φ(I1, I2, I3; β)
S = (1)

∂E

In equation (1), E is the Green-Lagrange strain tensor and S is the second Piola-

Kirchhoff stress tensor. The Green-Lagrange strain tensor may be expressed as

E = 1
2
(F T F − 1), where F = ∇Xφ(X), is the gradient of the deformation φ with

respect to the material co-ordinates. For an isotropic solid, the strain energy density φ

can depend on the deformation gradient F only through the list of invariants (denoted

by I1, I2 and I3) of the right Cauchy-Green strain tensor C = F T F . In addition

it is allowed to depend on a vector of material parameters β(X), whose values may

vary spatially. In relation to soft tissue mechanics, different types of tissue behavior in

response to applied load or deformation may be obtained by selecting different functional

forms of the strain energy function φ.

The equations of equilibrium written in the reference configuration Ω0, in the

absence of body forces are:

∇
X

· (FS) = 0 in Ω0 (2)

U = G on Γg (3)

FS · N = H on Γh (4)

In equations (2-4), Γg and Γh are subsets of the boundary Γ on which displacement and
�

traction boundary data, G and H respectively, are specified. Note that, Γ = Γh Γg

and Γh Γg = ∅, that is, either displacement or traction boundary conditions must

be specified on the entire boundary. In equation (4), N denotes a unit normal vector

in the reference configuration. With this background about the strong form of the

equilibrium equations, we proceed to the weak form of the hyperelasticity equations

and their computational solution.

2.2. The weak form and its numerical solution

We begin by defining functions spaces S and V , for admissible solutions and weighting

functions.

S = {U |Ui ∈ H1(Ω0); Ui = Gi on Γg} (5)

V = {V |Vi ∈ H1 (Ω0); Vi = 0 on Γg} (6)

The weak formulation of the equilibrium equations (2-4) can be obtained by multiplying

equation (2) by a weighting function W ∈ V and integrating by parts. Alternatively

it may be obtained directly by minimizing the total potential energy of the system. In

the reference configuration it is given by: Find a displacement U ∈ S such that

A(W ,U ; β) − Wi · Hi dΩ0 = 0 ∀W ∈ V, (7)
Γh
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where the semi-linear form A(·, ·; β) is given by
�

A(W ,U ; β) =
Ω0

Wi,IFiJSJI dΩ0. (8)

The weak form may be approximated using Galerkin’s method in conjunction with

standard finite element basis functions to obtain an approximate numerical solution of

the forward problem. This solution requires the linearization of the semilinear form A,

about an arbitrary displacement field state U which yields a bilinear form AU (·, ·; β,U )

given by

d
AU (W , ΔU ; β,U ) = A(W ,U + ǫΔU ; β)

dǫ→0

= Wi,J(δikSJL + FiIFkKCIJKL)ΔUk,L dΩ0. (9)
Ω0

In equation (9) CIJKL are the components of a fourth order tensor defined as follows:

∂S ∂SIJ ∂2φ
C = or CIJKL = or CIJKL = (10)

∂E ∂EKL ∂EIJ∂EKL

Since the order of differentiation does not matter, it is clear from the equation above

that the fourth order tensor C possesses major symmetry, that is CIJKL = CKLIJ .

Using this and the symmetry of the stress tensor S it may be verified from (9) that

AU (·, ·; β,U ) is symmetric.

2.3. Numerical solution

The solution of the equations of equilibrium for a solid undergoing finite deformations

is significantly harder than the corresponding linear, infinitesimal deformation case.

The former leads to a set of nonlinear algebraic equations which may not converge for

large applied loads. To overcome this problem, an incremental loading strategy is often

adopted which involves applying the prescribed boundary conditions in several (nload)

load steps and using nnewton Newton iterations at each step. This leads to nload×nnewton

stiffness matrix assemblies and solves as compared to just one for the linear case. For

our applications, we have found that nload ≈ 80 and nnewton ≈ 6, which makes the

solution of the forward problem very expensive. Further, since the formulation of the

inverse hyperelasticity problem we propose in this manuscript requires a series of forward

solves, it is imperative that the time taken to solve the hyperelasticity forward problem

be kept within a manageable limit. In Section (4.2), we describe an approach which

accomplishes this.

3. The formulation of the inverse problem

We formulate the inverse problem as a constrained minimization problem and solve it

using a quasi-Newton optimization algorithm. Such an algorithm requires at every

iteration the gradient of the objective function with respect to the optimization

parameters. The gradient of the objective function is evaluated efficiently using the
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adjoint of the linearized hyperelasticity equations. Similar approaches for solving inverse

problems have been used in [4, 24–26]. We consider a generic hyperelastic material

model, which depends on Nβ material parameters β = [β1, · · · , βNβ
]T . We seek the

spatial distribution of material parameters which minimizes the difference between a set

of n measured displacement field Um,1, · · · ,Um,n and the corresponding set of predicted
ndisplacement fields U 1, · · · ,U . The predicted displacement fields are constrained to

satisfy the equations of equilibrium. The objective function is the square of the L2 norm

of the difference between the measured and predicted displacement fields. We have

chosen the L2 norm as it avoids the need to differentiate a noisy measured displacement

field and yields a maximum likelihood estimate of the material parameters if the noise

in the measured displacement fields is Gaussian [27, pp657-658].

The statement of the inverse problem is : Find the spatial distribution of the

material parameters β such that the objective function π (defined in equation (11))

is minimized to the subject to the constraint that each deformation field satisfy the

equilibrium equations, that is (1-4) or (7) and (1).

The objective function π is given by

n Nβ

1 1
π = wp‖T (U p) − T (Um,p))‖2

2 + αj‖βj‖b

2 (11)
2 2

p=1 j=1

In the above equation, for the pth measurement, Um,p is the measured displacement

field, U p is the corresponding predicted displacement field, T is a tensor which selects

the appropriate displacement components and wp represents a weighting factor. In

addition, for each material property field βj, αj is a regularization parameter and ‖ · ‖b

is the regularization norm. The significance of these quantities is discussed below.

Remarks

(i) The weighting factors wp are chosen so that all measurements contribute equally to

the objective function π. This ensures that there is no bias towards measurements

with large deformation. For example, if two measurements were available and one

of these, say the second contained much larger displacements. Then the objective

function will be more sensitive to the second field, and the minimization algorithm

would be biased in favor of minimizing this field. In order to remove this bias, it

may be useful to select the weights to be inversely proportional to a measure of

magnitude of the displacement fields. That is

w1 = (
q2

)2 and w2 = 1 (12)
q1

where q1, q2 represent the magnitude of the measured displacements.

(ii) Often only one component of any measured displacement vector Um,p is reliably

known. This is typically the case when the imaging system has better resolution in

one direction than the other. For example, when ultrasound is used to measure

the deformation, reliable estimates of the displacement field are obtained in a
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direction parallel to the axis of the transducer. In such cases it might be useful to

compare only the axial component of the measured displacement with the predicted

displacement. In our formulation, this is accomplished by the tensor T . Assuming

the axial component is along the unit vector e2, an appropriate choice for T is

T = e2 ⊗ e2. (13)

(iii) In equation (11) αj is a regularization factor, which controls the trade off between

matching the predicted and measured displacement fields and certain desirable

physical characteristics of the spatial distributions of the material parameters

(such as smoothness). These characteristics are selected by the choice of the

regularization norm ‖ · ‖2
b
. The choice of L2 norm, defined by (14) ensures that the

material parameter distribution does not attain unphysically large values. The H1

semi-norm defined in equation (15) penalizes oscillations in the solution, ensuring

smoothness in the recovered material parameter distributions. The total variation

diminishing (TVD) regularization norm, defined in equation (16), does just that,

but does not penalize jumps in the solution. In this norm, c is a small parameter

which ensures differentiability of the norm at |∇βi| = 0. In this manuscript we

have chosen c = 0.1.

‖βj‖
2
2 = β

j

2 dΩ0 (14)
Ω0

‖βj‖
2
H1−semi

= |∇βj|
2 dΩ0 (15)

Ω0

‖βj‖TV D

2 = |∇βj|
2 + c2 dΩ0 (16)

Ω0

4. Inverse problem solution using the adjoint method

4.1. Definition

We denote the variation in a function f(x) in the direction δx by δf and it is given by:

d
δf = Dxf · δx =

�

�
f(x + ǫδx) (17)

dǫ ǫ→0

Here Dxf is the directional derivative of the function f(x).

4.2. Gradient calculation via the adjoint method

In the previous section, we have formulated the inverse hyperelasticity problem as a

constrained minimization problem. To solve this problem we rely on a quasi-Newton

algorithm which requires the gradient vector at each iteration. The computation of the

gradient is by far the most expensive part of our solution algorithm. In this section we

present a method to evaluate the gradient efficiently.

We use the following notation: A superscript index denotes a quantity associated

with the measurement indicated by the superscript. For example, U
I

m,p denotes the I th
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1: Guess a homogeneous distribution for each of the material parameters β1(X), β2(X), · · · , βNβ
(X)

2: repeat

3: Solve forward hyperelasticity problems corresponding to the current distribution of the material

parameters using the previous displacement field if available

4: Solve corresponding linear adjoint problems

5: Evaluate the objective function and its gradient

6: Use a quasi-Newton optimization algorithm to update the guess of the material parameters

7: until Either the objective function π is low enough or the maximum number of iterations have

been reached.

Figure 2. Solution of the hyperelasticity inverse problem

component of the measured displacement field corresponding to the pth measurement

and U
I

p denotes the I th component of the predicted displacement field corresponding to

the same measurement.

We note that in the objective function π, (11), each U i depends on β through

the equilibrium equations (1) and (7). We account for this constraint using Lagrange

multipliers. We begin by writing the Lagrangian L corresponding to the objective

function π and the hyperelasticity constraints.

L(W ,U ,β)
def

=
1

2

n
�

wp‖(T (U p) − T (Um,p))‖2
2 +

1

2

Nβ
�

αj‖βj‖
2
b

p=1 j=1

n
�

+ (A(W p,U p; β) − (W p,Hp)Γp ) (18)
h

i=p

In equation (18), W p is interpreted as a Lagrange multiplier enforcing the constraint

of hyperelasticity for the pth predicted displacement field. In the following development

we will use to the Lagrangian to derive an expression for the derivative of the objective

function with respect to optimization parameters.

The variations in the Lagrangian are denoted by δL and are given by
n n

δL = DW
pL · δW p + DU

pL · δU p + DβL · δβ (19)
p=1 p=1

We set the variations in L with respect to the Lagrange multipliers W p, to zero. This

yields the following equation for each U p

∈ Sp,

set

A(δW p,U p; β) − (δW p,Hp) = 0 ∀ δW p

∈ V
p. (20)

Note that the equation above is identical to (7) up to the superscript p. That is, each

U p is required to satisfy the forward problem for that particular deformation field.

Equation (20) is often referred to as the primal problem. When all U p are selected such

that equation (20) is satisfied, that is when all the predicted displacement fields U p

satisfy the forward elasticity equations, from (1) and (18) we have,

π = L. (21)
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Therefore on surfaces satisfying (20) we have

δπ = δL. (22)

We return to (19) and set variations in L with respect to every U p equal to zero.

That is, we choose values for the Lagrange multipliers W p

∈ Vp such that

set

DU
pL · δU p = 0 ,∀ δU p

∈ V
p. (23)

Using (18) and (8), this equation yields

set

AU (W p, δU p; β,U p)+ (T (U p

−Um,p))·T (δU p) dΩ0 = 0 ∀ δU p

∈ V
p(24)

Ω0

where the bilinear form AU (·, ·; β,U p) is given by (9). Equation (24) which is used to

determine W p is the adjoint of the linearized elasticity equations. Since the linearized

operator is self-adjoint (see Section 2.2), this equation may be written as: Find W p

∈ Vp

such that

set

AU (δU p,W p; β,U p)+ (T (U p

−Um,p))·δU p dΩ0 = 0 ∀ δU p

∈ V
p(25)

Ω0

Note that when U p and W p are chosen according to (20) and (25) respectively, the

relation (22) holds and the first two terms in (19) vanish. As a result we have

δπ = DβL · δβ

n �

� �

Nβ

= W p F p

DβSp

· δβ dΩ0 + αj(βj, δβj)b (26)
i,I i,J IJ

p=1 Ω0
j=1

Equation (26) represents the change in π due to an infinitesimal change in the material

parameters in the direction of δβ.

To derive an expression for the gradient for the finite dimensional problem, we

expand the material parameters in terms of a basis,

N

βj = MA(X)bjA (27)
A=1

In the above equation, N represents the number of basis functions, MA(X), used

to represent each material parameter and bjA is the coefficient of the j-th material

parameter corresponding to the Ath basis function. As a result variations in the material

parameters are given by

N

δβj = MA(X)δbjA (28)
A=1

where δbjA represents variations in bjA. Using (28) in (26) we have

Nβ N

δπ = gjAδbjA (29)
j=1 A=1
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where gjA is identified as the gradient of π with respect to the material parameters with

respect to the Ath coefficient for the jth material parameter. From (26)-(29) we conclude
n �

�� � �

W p F p SpgjA =
i,I i,J

Dβj IJ
MA(X) dΩ0 + αj(βj,MA(X))b. (30)

p=1 Ω0

Note that in equation (30) there is no sum on the index j. Thus in order to

evaluate gjA at every iteration, we first solve n non-linear forward problems (20) to

determine U p p = 1, 2, · · · , n, then solve n linear adjoint problems (25) to determine

W p p = 1, 2, · · · , n and use this in (30). Our algorithm to solve the inverse problem is

described in Table (2).

Remarks

(i) Increasing computational speed of the inverse problem: The solution time

of the inverse problem with the adjoint method is dominated by the computational

cost of solving the nonlinear forward problem (20) at each iteration. The high

computational cost of the forward problem arises because it needs to be solved

using small load increments and performing several Newton iterations for each

increment. To speed up the solution of this problem, and hence the computation

of the gradient, we perform the load increments only the first time the forward

problem is solved (the first iteration of the optimization algorithm). For subsequent

iterations, we apply the entire load in one iteration. This requires a very good guess

of the displacement field everywhere in the domain, which is the displacement field

corresponding to the previous iteration of the optimization algorithm. We have

found that this field is close enough to ensure quick convergence. Thus, after the

first iteration, the forward elasticity problem is solved very efficiently (typically in

about 6 Newton iterations).

(ii) We have not addressed the uniqueness of the recovered spatial distribution of

material parameters. Indeed, there could be more than one set of material property

distributions, perhaps even entire families of distributions, that could minimize

the objective function (11). For the inverse problem for the linear, infinitesimal

deformation elasticity case, it has been demonstrated that the uniqueness of

the solution depends on the boundary conditions, and that for problems with

prescribed displacement boundary condition a single measured displacement field

is not sufficient to ensure uniqueness [28,29]. It has also been shown that multiple

measured deformation fields (for example deforming the same elastic specimen in

compression and in shear) can be used to restrict the set of solutions for the spatial

distributions of material parameters and render the solution unique. We believe

that a similar analysis can be performed in the finite deformation, hyperelastic case

for a specific form of the strain energy density function or to identify the coefficients

α1(x), α2(x) in the general form of the Cauchy stress tensor and the equilibrium

equation in the current configuration as below:

T = − p1 + α1(x)B + α2(x)B−1 (31)
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∇
x
· T = 0 (32)

It is also clear that for non-linear behavior of tissue distinct displacement fields

can also be obtained by using different levels of compression of the elastic medium.

We are in the process of extending the work in [28, 29] to the finite deformation,

hyperelastic case.

(iii) The strong form of the equations of equilibrium (2) can be treated as a set of

equations for the unknown material parameters β with the measured displacement

field U as a known quantity. These equations may then be solved for the material

parameters β. This would be the so-called “direct approach” to solving the inverse

elasticity problem. The advantage of this approach is its computational ease

(solving a single nonlinear partial differential equation). However, this approach

also involves computing the second derivative of the displacement field, which

may be inaccurate in the presence of noise. In addition, it relies on knowing all

components of the measured displacement field, which may not be available in

practice.

(iv) The adjoint method of gradient calculation requires only one solve of the forward

hyperelasticity problem and one solve of the adjoint problem to compute the

gradient of the objective function. This means that the cost to compute the gradient

of the objective function is essentially independent of both the number of material

parameters in the hyperelastic constitutive relation and the number of parameters

used to discretely represent each parameter.

(v) In this work, we have not considered the question of possible loss of material stability

and its effect on the inversion algorithm. The inequalities of Baker-Ericksen,

Coleman-Noll, and strong ellipticity need to be satisfied for each iteration in the

inversion algorithm. These inequalities are motivated by physical considerations

such as “stress-increases with strain”. These inequalities may imply certain

additional inequalities among the material parameters appearing in the hyperelastic

relation which may change with the deformation. Not satisfying these inequalities

may lead to problems of convergence for the finite element method and may lead to

unphysical parameters in the constitutive relation . The reader is referred to [23]

for a discussion of these inequalities.

5. Numerical examples

In this section we present two dimensional examples in which we reconstruct the of dis-

tribution non-linear parameters from synthetic displacement fields with noise. We first

assume a distribution of material properties corresponding to a stiff circular inclusion

in a homogeneous background. We then solve two forward hyperelasticity problems

corresponding to this distribution of material properties and obtain the corresponding

displacement fields. In the examples considered, one of the displacement fields is with

large applied strain (20%) and the other displacement field is with small applied strain
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(1%). The Veronda-Westman constitutive relation is used to describe the constitutive

behavior of soft tissue. This strain energy function and associated quantities for this

relation are presented in equations (33,34,35). Additive white Gaussian noise is then

added to the synthetic displacement fields thus generated using the AWGN function

in Matlab, to simulate experimentally acquired data. Such a noise level corresponds

to 40dB level noise in the measured displacement field and is believed to be realistic

representation of the level of noise in an ultrasound system [6].

We then recover the material properties using only one component (the axial compo-

nent) of the displacement fields. We start with a homogeneous guess of the material

properties and then improve on this homogeneous guess by using a quasi Newton opti-

mization approach. The gradient of the objective function is calculated efficiently using

the adjoint method as described in section (4.2). For this purpose, we have developed a

hyperelastic finite element based code for the calculation of the hyperelastic parameters.

The results presented were obtained on a 1.7Hz Pentium Xeon machine.

We begin by describing the constitutive relation used to describe the mechanical behav-

ior of soft tissue in section (5.1) and discuss the significance of the material parameters

appearing in it. We then linearize the material tangent modulus and show that in the

limit of small deformations the deformation is affected only by the parameter µ and this

then motivates the use of a small strain deformation field (1%) in the reconstruction.

We then specialize the three dimensional constitutive law to two dimensions assuming

plane strain deformations in section (5.1.2). We then describe the boundary conditions

and the geometry of the specimen which is deformed in section (5.2). We close with

figures showing ideal and recovered distributions of the material parameters in section

(5.3).

5.1. Constitutive relation and significance of the parameters

In the non-linear elasticity regime, the constitutive relation is of paramount importance

because this is the relation that governs the behavior of tissue in response to applied

deformation or load. When the tissue behavior is assumed to be hyperelastic, then

different forms of tissue behavior and thus different tissue models can be chosen by

selecting different forms of the stored energy function φ(I1, I2, I3,β). Different strain

energy functions have been used in the literature relating to elasticity imaging to describe

tissue deformation. For example, to characterize the behavior of soft tissue, the Arruda-

Boyce relation [30] has been used by Li et al in [31] to model the behavior of soft tissue

in an indentation experiment. The Mooney-Rivlin strain energy function has been used

in [32] to calculate hyperelastic properties of soft tissues using a truncated expansion

in the strain invariants. The same form has been used in [16]. In this paper, we have

selected the Veronda-Westmann relation [33] characterized by equations (33,34,35), since

soft tissues exhibit approximately exponential stress strain response. This form of the

strain energy function was used by Nienhuys in [34] to model the cutting of soft tissue.
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In this work we recover the parameters γ and µ. The parameter γ is the non-linearity

in the relation and the parameter µ corresponds to the shear modulus at zero strain. β

is a large parameter that penalizes compressible deformations.

φ =
µ

(eγ(I1−3)
− 1) −

µ
(I2 − 3) + β(I3 − 1 − ln(I3)) (33)

γ 2

SIJ = 2 (µeγ(I1−3)
−

µ
I1)δIJ +

µ
(CIJ (34)

2 4
β

+ CJI) + (I3 − 1)(C−T + C−1)
2 IJ JI

CIJKL = 4 (γµeγ(I1−3)
−

µ
)δKLδIJ +

µ
(δIKδJL + δJKδLI) (35)

2 4
β

2I3C
−T C−T C−T + C−1 C−T+

IJ
− (I3 − 1)(C−1

JL JK IL
)

2 KL IK

5.1.1. Linearization of the material tangent modulus For small deformations, the ma-

terial tangent modulus can be linearized about the zero strain state as follows.

µ
CIJKL = 4(γµ − + β)δKLδIJ + µ(δIKδJL + δJKδLI) (36)

2

In equation (36), β is a large parameter β ≫ γµ −
µ

2
. Thus, the deformation at small

strains is effectively controlled by variations in coefficient (µ), in front of the second term

(δIKδJL + δJKδLI). In solving the inverse problem, we can take advantage of this fact

by recovering the parameter µ from a small strain deformation field. The distribution

of the parameter γ is recovered by incorporating a large strain deformation field in the

objective function.

5.1.2. Specialization to two dimensions For computational purposes, we specialize the

three dimensional Veronda-Westman constitutive relation (33,34,35) to two dimensions

by assuming plane strain deformations. Then form of the Veronda-Westmann relation

changes to

φ =
µ

(eγ(I1−2)
− 1) −

µ
(I2 + I1 − 3) + β(I2 − 1 − ln(I2)) (37)

γ 2

Here I1, I2 are the invariants of the two dimensional right Cauchy-Green strain tensor

C = F T F .

SIJ = 2 (µeγ(I1−2)
−

µ
I1 −

µ
)δIJ +

µ
(CIJ (38)

2 2 4
β

+ CJI) + (I2 − 1)(C−T + C−1)
2 IJ JI

CIJKL = 4 γµeγ(I1−2)δKLδIJ −
µ

δKLδIJ +
µ

(δIKδJL + δJKδLI) (39)
2 4

β
+ 2I2C

−T C−T

− (I2 − 1)(C−1C−T + C−1 C−T )
2 KL IJ IK JL JK IL
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5.2. The problem configuration, the deformation fields used: 1% and 20% strain

We have used two deformation fields to recover the distributions of parameters γ, µ in

the Veronda-Westman constitutive relation. The deformation field chosen are 1) at 1%

compression 2) 20% compression. These deformation fields are chosen because at small

deformations only the parameter µ which is the shear modulus at zero strain state affects

the deformation of the material. At larger strains the parameters γ and µ both affect the

deformation. Thus both the parameters can be recovered from the deformation fields.

In both deformations, the specimens are deformed according to the schematic diagram 3.

5.3. Two dimensional examples: figures of parameter recovery

We present the following results for the example problem show in figure (3).

(i) Ideal distributions of µ and γ.

(ii) Recovered distributions of µ and γ.

(iii) Line plots of the material properties through sections AA and BB shown in figure

(4).

Problem Size (elements) Number of iterations Solution time

30X30 100 ≈ 2700 seconds

5.4. Problem description

Figure (3) shows a schematic of the problem solved in the reference configuration.

The nonlinearly elastic medium obeying the Veronda Westman relation is described

in equations (33,34,35), is a rectangular domain with its top edge held fixed in the

y-direction (free to move in the x dirction) and displacement boundary conditions

(compression) applied to the opposite edge in the y-dirction with the nodes being free

to move in the x-direction. The sides are traction free. Two levels of compression are

applied to the boundary (1% and 20%), to yield two different displacement fields. The

time taken to generate these two deformation fields is 30 minutes or 15 minutes each.

That is, the time taken for one complete forward solve is 15 minutes.

5.4.1. Ideal (Target) distributions of µ and γ Figure (4) shows the distributions of the

material parameters µ and γ that where used to generate synthetic displacement data.

Thus, they represent the ideal spatial distributions of material parameters that can be

recovered from the displacement data.

5.4.2. Parameter recovery at 1% noise In figures (6,7,8) we show the recovered

distributions of µ and γ with various regularization norms.
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Figure 3. Example problem used for numerical simulations
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Figure 4. Target distribution of γ and µ
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5.5. Lineplots of the material properties through a section in their center

Figure (9) shows variations of material properties along the vertical sections AA and BB

which are shown in (4). The plots how that in this case, to recover µ, the L2 norm and
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Figure 6. Recovered distributions of γ and µ with the TVD norm
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Figure 7. Recovered distributions of γ and µ with the H1 semi norm
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Figure 8. Recovered distributions of γ and µ with the L2 norm

the H1 semi norm are the most effective norms in recovering the parameter contrast.

The recovery with the L2 norm is non-smooth and the inclusion is of the wrong size. The

TV D norm recovers roughly the same contrast ratio albeit with different average and

peak values. This can be seen in Figure (6) in which the entire background is elevated
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above the starting guess. Figure (9) also shows similar plots for γ. In this case the

performance of the TV D norm is seen to be good in recovering the sharp edges. This is

not surprising since the underlying parameter distributions have sharp edges, and the

TV D norm is expected to yield sharp edges in reconstructions. The parameter recovery

for γ with the L2 norm is comparable in contrast to the TV D norm but the parameter

recovery is not smooth. The H1−semi norm yields a smooth result for the parameters.

6. Conclusions and future work

In this work we have developed an efficient iterative formulation for the non-linear

elasticity imaging inverse problem. The method relies on the adjoint method of

optimization to calculate the gradient of a cost-function efficiently. Representative

numerical examples were presented. These examples show that it is feasible to

reconstruct material parameter distributions for hyperelastic materials in the presence

of noise. With a good starting displacement guess for the inverse problem, the solution

time of the non-linear elasticity imaging inverse problem using the adjoint method is

comparable to the solution time of the linear elasticity imaging inverse problem using

the adjoint method.

It must be emphasized that there are numerous other issues involved in non-linear

elasticity, which maybe addressed in future work. These include, tests on experimental

and clinical data, the importance of using the correct constitutive law (or the effect of

using an incorrect constitutive law) as the model for the tissue behavior, feasibility of

recovering non-linear elastic properties when small strains are used in the deformation

process, the feasibility of using different tissue constitutive relations in different parts

of the domain, possibly adaptively, or the feasibility of performing reconstructions for

anisotropic non-linear elasticity.
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(a) Line plots representing variation of γ along a vectical section

through the center

(b) Line plots representing variation of µ along a vectical section

through the center

Figure 9. Line plots representing variation of γ and µ along a vertical section through

the center
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Appendix A. Selection of the regularization parameters α1 and α2

In this section, we describe in detail the selection of the regularization parameters α1

and α2 appearing in equation ??. Some regularization is necessary to be added to the

problem because of the presence of noise in the experimentally acquired data or to ensure

uniqueness of solution. The regularization parameters α1 and α2 are calculated for the

two deformation fields at 1% and at 20% according to Morozov’s discrepancy principle.

The reader is referred to [37] for a review of this and other regularization techniques

such as the L-curve method. The treatment of regularization parameter selection closely

follows our treatment of the problem in [4]. We begin by defining the noise Δ in the

measurement:

Δ = ‖T (Umi) − T (U i)‖/‖T (Umi)‖ (A.1)

Here, T (Umi) represents the measured component of the ith displacement field. U

represents the noiseless measurement. Thus, ‖T (Umi) − T (U i)‖ is the deviation from

the perfect measurement. Then, αi should be chosen to be the largest real number that

allows:
mi

‖T (Umi

− U i)‖ = C‖T (Umi

− U )‖ (A.2)

In the above equations, C is a real number which is chosen such that C ≈ 1. This means,

that the difference between the measured and predicted displacement field should be

roughly the same as the difference between the measured displacement field and the

noiseless displacement field. In other words, one should not match the measured and

displacement fields to a greater extent than the level of noise present in the problem.

Choosing a large value of αi increases the importance of the regularization term in

relation to ‖T (U im

−U i)‖ and gives a solution for the material parameter distribution

that is dominated by the characteristics chosen by the choice of the regularization norm.

However, this may mean that the measured and predicted displacement fields are not

well matched. Lowering the regularization parameter α reduces ‖T (Umi

− U i)‖.

Another way of looking at Morozov’s discrepancy principle is the following. We use the

triangle inequality to write:

‖T (U i) − T (U i)‖ ≤ ‖T (U i) − T (Umi)‖ + ‖T (Umi) − T (U i)‖ (A.3)

In the above equation, the left hand side represents the total error in the reconstruction

if perfect data is available. The right hand side is the sum of the error in reconstruction

‖T (U i)−T (Umi)‖ and error in measurement ‖T (Umi)−T (U i)‖ for the ith deformation

field. Morozov’s discrepancy principle states that the regularization parameter should

be chosen so that a balance between the reconstruction error and the measurement error

is achieved.

We now describe how αi is calculated for a known noise level Δ. Substituting equation

(A.1) in (A.2) we obtain the following equation

‖T (Umi

− U i)‖ = CΔ‖T (Umi)‖ (A.4)
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Quantity Field 1 Field 2

‖T (Um

− U )‖ 3.2411E-3 7.061E-3

‖T (Um)‖ 0.5752 11.38

Δ 0.01 0.01

C 0.5634 0.6205

Table B1. Calculation of the constant C (see equation A.4) for the TVD norm

Quantity Field 1 Field 2

‖T (Um

− U )‖ 3.36E-3 0.10655

‖T (Um)‖ 0.5752 11.38

Δ 0.01 0.01

C 0.6382 0.9363

Table B2. Calculation of the constant C (see equation A.4) for the H1 semi norm

Quantity Field 1 Field 2

‖T (Um

− U )‖ 4.42E-3 0.0999

‖T (Um)‖ 0.575 0.13211

Δ 0.01 0.01

C 0.7729 1.16

Table B3. Calculation of the constant C (see equation A.4) for the L2 norm

The term Δ‖T (Umi)‖ can be easily calculated once Δ is known. The term ‖T (Umi

−

U i)‖ can be calculated assuming a value for α and solving the hyperelasticity inverse

problem. With this knowledge, C can be calculated. We then repeat this process,

adjusting the values of α until C ≈ 1.

Appendix B. Selection of the regularization parameters for this example

The regularization parameters in this example were adjusted so that C ≈ 1. This

calculation is shown in tables (B1,B3)
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1. Introduction

Elastography refers to a collection of imaging techniques that allow mechanical strain
distributions to be imaged and noninvasively quantified in vivo.

The time scales over which the tissue response is typically measured ranges from
about a millisecond (the typical duration for a radiation force “push pulse” to about
one second, (the typical time scale of freehand quasistatic compression used in strain
imaging [1, 2]). Magnetic resonance elastography and sonoelasticity imaging typically
use time-harmonic excitations with frequencies in the range of 102Hz.

The mechanical responses of soft tissues and tissue mimicking gels observed under
transient excitations, be they radiation force or time-harmonic excitations, show
a predominantly elastic component as well as a small viscoelastic component. In
quasistatic deformations, on the other hand, the strain fields are typically observed
for about a second and are interpreted within the context of linear (or rarely nonlinear)
elasticity. That is, the tissue response is assumed and observed to be approximately
purely elastic.

Soft tissue is widely recognized as having both fluid and solid phases which
can move independently of each other. Furthermore, the fluid exists within several
“compartments” of the soft tissue, notably, the vasculature (including both the hemal
and lymphatic vessels) and the extravascular space. Of course, due to permeability
of the microvessels in both vascular networks, fluid is often exchanged between these
compartments. It is recognized that fluid flow leads to a stress relaxation at fixed
strain (or conversely, a strain relaxation at fixed stress). It is reasonable to conjecture
then, that by measuring the spatio-temporal patterns of strain in a strain-relaxation
type of experiment, the effects of fluid flow can be visualized and measured. Indeed,
recent experiments on a poroelastic tissue mimicking phantom have demonstrated the
ability to image the effects of fluid flow on spatio-temporal strain patterns, and to
interpret those effects within the biphasic [3] or Biot poroelasticity theory.

The linear “biphasic theory” [3, 4] can be regarded as a special case of Biot
poroelasticity; the special case being that of having two incompressible phases. It
has been very successful at modeling the fluid-elastic coupling in cartilage [4, 3].
Cartilage tends to be avascular, however, and so fluid resides only in the “extravascular
compartment”.

A different model for the mechanics of vascularized soft tissue, which includes the
effects of fluid flow and the possibility of exchange between fluid compartments was
proposed by R. Skalak, RK Jain, and coworkers. The model was originally developed
in a rather general context to capture effects of fluid-elastic coupling in soft tissues,
but was then applied to describe perfusion and drug delivery in solid tumors. It has
since been applied in [5], and validated in an experimental model in [6].

Our motivation for this work stems from the question Can techniques from

elastography be used to image and quantify interstitial fluid flow in soft tissues from

spatio-temporal patterns of elastic strain? To answer this, we use the mathematical
model of [5] in conjunction with finite element modeling to predict the effects of fluid
flow on the spatio-temporal patterns of soft-tissue elastic strain under a variety of
physiological conditions. The magnitude of the strain effects and their time scales
dictate the measurability of the effects of fluid flow. Simulations relevant to a
quasistatic elasticity imaging for the characterization of fluid flow in solid tumors are
emphasized here. In this context, the following questions are specifically addressed:

(i) How do characteristics of tumor microvasculature effect strain relaxation in solid
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tumors?

(ii) How does the spatio-temporal strain pattern depend on the relative importance
of fluid flow within the extravascular compartment versus fluid exchange between
the vascular and extravascular compartments?

(iii) How does the choice of boundary conditions effect the spatio-temporal patterns
of strain?

In the following “Methods” section, we describe a mathematical model that is
used to address the questions enumerated above. We present an exact analytical
solution of this model to be used to develop intuition and to serve as a check on
a finite element implementation. We then describe four computational experiments
designed to answer the questions raised above. This is followed by Results, Discussion
and Conclusions. In the Appendix, we include a derivation of the field equations and
the exact analytical solution.

2. Methods

2.1. Mathematical Model

We use the mathematical model described in [5], and derived in Appendix A. The
model treats the interstitial space as a biphasic material, and incorporates fluid
exchange between the interstitial compartment and the microvasculature. It is this
fluid exchange that distinguishes this model from a biphasic model for nonvascular
soft tissues such as cartilage.

The assumptions that go into the model are small strains, small vascular space,
Starling’s law for (transient) fluid transport across the vessel wall, Darcy’s law for fluid
flow through the interstitial compartment, and Hooke’s law for the elastic response.
We further assume the deformation takes place slowly enough that inertia can be
neglected. Under these conditions (see Appendix A for details), the solid displacement
vector u and interstitial fluid pressure p are related by:

∇ · u̇ − ∇ · [κ∇p] + χp = 0 (1)

∇ · [−pI + λ∇ · u I + 2µ∇
Symu] = 0 (2)

Equation (1) represents a combination of the conservation of fluid mass in the
interstitium, with the momentum equation for the fluid phase. Equation (2) represents
the balance of total linear momentum in the tissue. The symbols that appear in
equations (1) and (2) are defined as follows: ∇ is the gradient operator; I is the
identity tensor; u̇ = ∂u/∂t is the solid phase velocity; κ is the interstitial permeability
that governs the ease by which fluid percolates through the interstitium; λ and µ

are the drained elastic Lamé parameters of the interstitium; and χ is the average
LpSV LpLSLmicrofiltration coefficient, given by χ = χV + χL, with χV =

V
and χL =

V
;

Lp (resp. LpL) is the hydraulic conductivity of the hemal (resp. lymphatic) capillary
wall, SV /V (resp. SL/V ) is the surface area of the hemal (resp. lymphatic) capillary
wall per unit volume of tissue. In the special case χ = 0, we recover the linear biphasic
equations describing the deformation of avascular cartilage like materials.

It is implicit in the Equations (1) and (2) that, in general, mechanical loading
not only strains the tissue, but also pressurizes both solid and fluid phases. The
pressurization mechanism can be understood based on the mechanical behavior of the
drained interstitium (elastic solid matrix). In contrast to the solid phase, the solid
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matrix is compressible, i.e., it reduces its volume when a mechanical loading is applied
by reducing its pore space volume. In an ideal case, where there is no saturating fluid
or the saturating fluid can move frictionless within the pore system and drain freely to
the vascular compartment, the pore system would shrink instantaneously in response
to the applied loading. However, as the interstitial fluid face resistance to percolate and
drain, it resists to the pore system shrinking, pressurizing and being pressurized by the
solid phase. Relaxation takes place, i.e., pressure drops gradually, as the interstitial
fluid percolates or drains in response to the pressurization. During the relaxation
the tissue approaches to the solid matrix static equilibrium. At static equilibrium,
p = 0, and the mechanical behavior is governed by the solid matrix Lamé parameters.
It follows from the assumption that both solid and fluid phases are incompressible
that infinitesimal dilatation can occur only when the corresponding volume of fluid
percolates or drains to vascular or lymphatic systems.

2.1.1. One dimensional analytical solution Solutions of equations (1) and (2) exhibit
various stress/strain relaxation behaviors. Insight into these behaviors and their
connection to different physical constants that appear in the governing equations may
be developed by examining a simple analytical solution. This analytical solution also
serves as a check on the validity of our finite element (FEM) numerical implementation.

For the purposes of developing an analytical benchmark solution, we consider a
2D plane strain scenario of a rectangular homogeneous tissue sample in an unconfined
compression test. The configuration is shown schematically in Figure 1. The sample
has dimensions of L×h and fluid can flow freely across the lateral boundaries (p = 0),
which are also traction free. The fluid cannot flow across the top and bottom
boundaries, which are also shear stress free (slip boundary conditions). uy = 0 at
the bottom while a displacement step (or ramp) function is applied at the top.

For a step function compression of magnitude u0, the pressure field in the sample
is given by (equation (B.5) in Appendix B)

4µu0
p(x, t) = exp(−χ(λ + 2µ) t)

Lh
∞

×
∑

(
βn

) sin(αnx) exp(−α
n

2κ(λ + 2µ) t) (3)
αn

n=1

nπ
Here, αn = , βn = 1 − (−1)n.

L
Note that the pressure relaxation associated with microvascular filtration,

exp(−χ(λ + 2µ) t), is uniform over the entire sample. This is the result that a
uniform vascular distribution (as assumed in this example) drains all parts of the
tissue at the same rate. The pressure relaxation associated with fluid percolation
(the exp(−α

n

2κ(λ + 2µ) t) factor), on the other hand, is nonuniform over the sample.
The exponential factor is different for each n in the sum, and each factor multiplies
a spatial “mode shape” sin(αnx). Thus each spatial mode decays at a different rate.
While the mode shapes in this example are relatively simple, in general they depend
on the sample geometry and boundary conditions.

The horizontal normal strain, ǫxx, behaves very similarly to the pressure in this
example. Equation (A.3) shows

(λ + 2µ)ǫxx = p − λǫyy (4)
u0

= − λ + p(x, t) (5)
h
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Thus in this simple example, the spatiotemporal behavior of the interstitial pressure
p is reflected directly in the lateral strain distribution.

The above expressions are valid for a step compression applied instaneously with
time. The principal of linear superposition allows us to integrate in time equation (5)
to obtain the response for a gradual compression of the sample. In particular, (see
Appendix B for details) for an overall compression u0 applied linearly with time over
an interval of time t1, the pressure distribution is very similar in form to (3); viz.

4µu0
p(x, t) = exp(−χ(λ + 2µ) t)

Lht1
∞

× An sin(αnx) exp(−α
n

2κ(λ + 2µ) t) for t ≥ t1. (6)
n=1

βn[exp((α2

n
κ + χ)(λ + 2µ)t1) − 1]

An = (7)
αn(α

n
2κ + χ)(λ + 2µ))

The lateral strain is again given in terms of the pressure by equation (5).
Equations (6) and (5) indicate that the strain in x-direction (ǫxx) reaches its

maximum right after the mechanical loading has been applied and then decreases
with time, as the tissue relaxes. This is a typical pattern in unconfined tests of
poroelastic samples, and can be understood by considering the configuration assumed
by the sample in the two limits, t = 0+ and t = ∞. Immediately after a step
mechanical loading has been applied (t = 0+), fluid has not yet had a chance to leave
the sample. Thus, at t = 0+, we expect the sample to behave like an incompressible
solid, i.e., it occupies the same volume (area) as it occupied previously. On the other
hand, when the tissue is completely relaxed (t = ∞), the pressure relaxes to zero
and the mechanical behavior is governed by the solid matrix Lamé parameters. Since
the solid matrix is compressible, the sample should now occupy a smaller volume
(area). As uy is constant with time in this experiment, (due to the constant boundary
conditions), any volume reduction must be reflected in a shrinking in the x direction.
Of course, during the transient regime, while the fluid is exuding and/or draining, all
the configurations assumed by the sample correspond to configurations between these
two extremes.

As mentioned above, in both equations (3) and (6) we can identify in two different
transient phenomena, percolation and vascular drainage. These are controlled by
α

n

2κ(λ + 2µ) and χ(λ + 2µ), respectively. The form of these constants indicates
that, beside the dependence on the interstitial hydraulic conductivity and filtration
coefficient, the greater λ and µ are (especially λ which usually is much larger than µ),
the faster the tissue relaxes. The ratio of κ/L2 and χ indicates the relative importance
of fluid flow within the extravascular compartment versus fluid exchange between
compartments.

To illustrate this, we plot in Figure 2 the solution for Equation (B.7), at three
different times, for L = 10cm, h = 10cm, u0 = 1 cm and t1 = 0.3sec. For the
blue line, the poroelastic parameters are chosen such that vascular drainage, or fluid
exchange between compartments, is the dominant phenomenon. (The parameters used
are listed in Table I and correspond to the inclusion in Experiment 1.) We observe
that the pressure is homogeneous along almost the whole sample width. The pressure
decreases very rapidly close to the lateral surfaces, which indicates that only a small
amount of fluid crosses the boundary. For the red line, we increase κ 10,000 times and
decrease χ 1,000 times. Now, we see that the pressure boundary layer rapidly becomes
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thicker with time, indicating that percolation is now dominant. In Figure 3 we plot
the strain field, ǫxx, at t = 5.4sec, for both cases. In the Figure 3(a), in agreement
with the pressure field plotted in Figure 2 (blue solid line), we see that the strain is
approximately constant along almost the whole sample. Again, this indicates that
the vascular drainage is dominant and percolation is negligible outside the very thin
boundary layers located at the sample laterals. It means that ǫxx is decreasing with
time uniformly with x. In Figure 3(b) we see that the strain varies with x, indicating
that percolation is now important. In agreement with [3], it indicates that now the
shrinking in the x direction diffuses with time from the laterals toward the center. It
is interesting to note that at t = 0+ and t = ∞ the sample configurations are the same
in both cases, the difference being in how the samples go from one limit to the other.

2.1.2. Selection of material properties The poroelastic medium is defined by 5
physical parameters: φf , λ, µ, κ and χ. We work in plane strain state. The 2-
D scenario assumed in the computational simulations is that of a circular inclusion
embedded in a square tissue sample, as shown in Figures 4 and 5. The circular
inclusion is intended to represent a malignant breast tumor, with stiffness, microvessel
density, hydraulic conductivity, and connective tissue density all elevated relative to
the background, normal, values.

Normal tissue properties: The tissue surrounding the inclusion is assumed to have
“normal” biomechanical properties. The shear modulus, µ, was chosen according the
values reported for breast tissue. We then calculated the corresponding value for λ

assuming a Poisson ratio of 0.49. The values for φf , κ and χ were chosen according
to values given in [6]. In Experiment 3, we arbitrarily increased the background
interstitial hydraulic conductivity, κ, to investigate percolation effects.

Malignant tissue properties: Regarding the inclusion, in order to reproduce a solid
tumor behavior, we assumed an augmented capillary filtration coefficient [6] in all the
experiments. We also assumed it is stiffer, increasing the value of µ, and assumed
a Poisson ratio of 0.47, calculating λ accordingly. All the parameters used are
summarized in Table I.

2.2. Computational experiments

In order to evaluate the predictions of the mathematical model with nontrivial
geometries and boundary conditions, we developed a finite element discretization
of equations (1) and (2) in two dimensions. We used the standard Galerkin
approximation with bilinear shape functions for both the pressure and displacement
fields. To integrate in time we use the Backward Euler method, assuming all
material parameters are constant with time. We have validated our implementation
by comparing the numerical solution to the analytical solution derived in the previous
section, as shown in the Figure 2.

We now use this finite element implementation to study two dimensional problems
that model hypothetical clinical imaging exams. In the computational experiments
presented here, we tried to reproduce hypothetical configurations for clinical breast
exams, and investigate the strain relaxation within the sample.
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2.2.1. Experiment 1 Experiment 1 is schematically shown in Figure 4. The circular
inclusion has 1 cm diameter and the sample has dimensions 10cm × 10cm. The fluid
cannot flow across the boundaries, mimicking a portion of tissue completely bounded
by skin. Therefore, the interstitial fluid can redistribute, but the only way for it to
leave the sample is by vascular drainage. Such an idealized boundary condition is
valid when the drainage effects are much larger than the percolation effects and the
permeable boundary is relatively far away from the region to be investigated, as in the
case here. The tissue is fixed at the bottom, where ux = uy = 0. The lateral surfaces
are traction free. At the top, we simulate the mechanical loading from a compressor
of 5 cm of width. The displacement of the compressor is modeled by a ramp function
such that the prescribed uy goes from 0 to 1 cm in 0.3 sec, in the region corresponding
to x = 2.5cm to x = 7.5cm. Below the compressor we prescribe zero shear stress
(τyx), which models a slip boundary condition.

2.2.2. Experiment 2 Experiment 2 is schematically shown in Figure 5. The circular
inclusion still has 1cm diameter, while the model still has dimensions of 10 cm×10 cm.
As before, the fluid cannot flow across the boundaries and the tissue is fixed at the
bottom. However, now the model is completely confined at the top, where uy goes from
0 to 0.03cm in 0.3sec, and is partially confined at the lateral surfaces, i.e., ux = 0 from
y = 2.0cm to y = 10cm, while it is traction free from y = 0.0cm to y = 2.0cm. The
goal here is to reproduce a situation of partial breast confinement, with the recognition
that the breast cannot be completely confined in the clinic.

2.2.3. Experiment 3 Experiment 3 has the same configuration as Experiment 1, but
the interstitial permeability, κ, is the same for both inclusion and surrounding tissue
and is 6.4 × 10−13m2/(Pa.sec).

2.2.4. Experiment 4 Experiment 4 has the same configuration as Experiment 1,
however the fluid can flow freely across the lateral surfaces of the sample, where p=0.

3. Results

In this section we show results corresponding to the region delimited by the dotted
line in Figures 4 and 5. It has dimensions of 4 cm × 4 cm and is contained between
x = 3.0 cm to x = 7.0 cm and y = 5.5cm to y = 9.5cm. We emphasize that we have
solved the problem in the entire domain, but are showing the results only in this region
of interest, in order to investigate the behavior of the inclusion and its surroundings in
detail. This is intended to be representative of ultrasound imaging where the physical
boundaries are typically distinct from the image boundaries.

3.1. Experiment 1

In this experiment, the fluid exchange between interstitial and microvascular
compartments is the dominant phenomenon. Due to the difference between the
filtration coefficient inside and outside the inclusion (it is 30 times larger inside),
a transient analysis of the problem can be outlined considering two different time
scales: the inclusion’s relatively short relaxation time and the surrounding tissue’s
large relaxation time.
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Right after the mechanical loading has been applied and before significant
fluid drainage has occurred, the tissue is pressurized and the sample approximately
behaves like an incompressible elastic solid, with the same shear modulus (µ) as
the corresponding solid matrix and a Young’s modulus equals to 3µ. The pressure
field at t = 0.3sec is shown in Figure 6(a). We can see the stress concentrations at
the transducer edges radiating in the upper left and right corners of the figure. At
the center, we can distinguish the inclusion and four lobes resulting from the stress
concentration at the inclusion.

Gradually, as the fluid drains from the interstitium to the microvasculature,
the tissue relaxes. In Figure 6(b) we plot the pressure field at t = 5.4sec.
Comparing Figures 6(a) and 6(b) shows that the inclusion relaxes much faster
than the surrounding tissue. This may be attributed to the higher value of the
microvascular filtration coefficient in the inclusion. In Figure 6(c) we plot the
difference in the x-normal strain field (ǫxx) between t = 0.3sec and t = 5.4sec, i.e.,
ǫxx(t=5.4sec)−ǫxx(t=0.3sec). In Figure 6(d) we plot the difference in the y-normal strain
field, i.e., ǫyy(t=5.4sec) − ǫyy(t=0.3sec) and in Figure 6(e) we plot the corresponding
dilatation difference, i.e., (ǫxx(t=5.4sec)+ǫyy(t=5.4sec))−(ǫxx(t=0.3sec)+ǫyy(t=0.3sec)). We
observe that the dilatation in the inclusion is negative, indicating that it is shrinking
as it relaxes. On the other hand, the volume of the surrounding tissue remains almost
unchanged (dilatation ≈ 0). We also observe four lobes in Figures 6(c) and 6(d)
resulting from the stress concentration redistribution around the inclusion, which has
occurred during the relaxation. We can see in Figure 6(e) that the fluid drainage at
the lobes is small, since the dilatation in this region is almost zero. In summary, at
t = 5.4sec, the mechanical behavior of the inclusion is approximately governed by the
corresponding solid matrix mechanical properties; that is, it has relaxed, while the
surrounding tissue still behaves like an incompressible material.

The inclusion takes about 10 secs to relax almost completely. In the Figure
6(f) we plot the pressure field at t = 10.2 sec. We observe that the pressure inside
the inclusion is close to the equilibrium pressure (p ≈ 0). In Figure 6(g) we plot
ǫxx(t=15.0sec) − ǫxx(t=10.2sec), in Figure 6(h) we plot ǫyy(t=15.0sec) − ǫyy(t=10.2sec) and
in Figure 6(i) we plot (ǫxx(t=15.0sec) + ǫyy(t=15.0sec)) − (ǫxx(t=10.2sec) + ǫyy(t=10.2sec)).
Now, both the inclusion and the surrounding tissue relax by similar amounts. Due
to the applied displacement, we see that the strain occurs predominantly in the x

direction and both inclusion and surrounding tissue shrink at approximately the same
rate. We also observe that the interstitial fluid drains faster (or percolates) in a thin
region around the inclusion, due to the stress concentration. The surrounding tissue
takes about 300sec to relax almost completely. As discussed before, at the steady
state, where both inclusion and surrounding tissue are relaxed, the sample assumes
the configuration where the mechanical behavior of both inclusion and surrounding
tissue are governed by the respective solid matrix Lamé parameters.

3.2. Experiment 2

Here, as before, the fluid exchange between interstitial and microvascular
compartments is the dominant phenomenon. A transient analysis of the problem
can again be outlined by considering two different time scales. The pressure field at
t = 0.3sec is shown in Figure 7(a). We see that the pressure magnitude is similar to the
previous case despite the much smaller displacement prescribed at the top boundary.
This is obtained by confining a portion of the lateral surface. We also observe that
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in contrast to the previous case, there is no stress concentration in the upper left and
right corners and the pressure field is almost uniform.

As the interstitial fluid drains, the inclusion relaxes. The pressure field at
t = 6.3sec is shown in Figure 7(b). We can see that the pressure inside the inclusion is
about 85% smaller at t = 6.3sec than at t = 0.3sec, while it remains close to the peak
in the surrounding tissue. Once again this is due to the higher vascular filtration in the
inclusion. In the Figure 7(c) we plot ǫxx(t=6.3sec)− ǫxx(t=0.3sec), in Figure 7(d) we plot
ǫyy(t=6.3sec) − ǫyy(t=0.3sec) and in in Figure 7(e) we plot (ǫxx(t=6.3sec) + ǫyy(t=6.3sec))−
(ǫxx(t=0.3sec) + ǫyy(t=0.3sec)). As in the previous case, we observe that the dilatation in
the inclusion is negative, indicating that it is shrinking as it relaxes, and the volume
of the surrounding tissue remains almost unchanged (dilatation ≈ 0).we also see four
lobes resulting from the stress concentration redistribution around the inclusion.

The inclusion takes about 10 sec to relax almost completely. The pressure
field for t = 13.5 sec is shown in Figure 7(f). The pressure inside the inclusion is
now negative, indicating that fluid is draining back to the interstitial compartment
from the microvasculature, as the surrounding tissue relaxes. In Figures 7(g),
7(h) and 7(i) we plot ǫxx(t=31.5sec) − ǫxx(t=13.5sec), ǫyy(t=31.5sec) − ǫyy(t=13.5sec) and
(ǫxx(t=31.5sec)+ǫyy(t=31.5sec))−(ǫxx(t=13.5sec)+ǫyy(t=13.5sec)), respectively. In contrast
to the previous case, due to the boundary conditions, the strain predominantly occurs
in the y direction. Further, in agreement with the pressure field shown in the Figure
7(f), we observe that during this period the inclusion swells while the surrounding
tissue shrinks. In fact, the inclusion attains its smallest volume at approximately
t = 13.5 and then swells till the sample reaches the steady state configuration.

3.3. Experiment 3

In this experiment we investigate the impact of increasing the interstitial permeability,
on the spatio-temporal strain pattern. The permeability here is 100 times higher
than in the previous cases, and is the same for both background and inclusion.
Here the percolation due to the interstitial pressure gradient at the periphery of the
inclusion is significant. The pressure field at t = 0.3sec is shown in Figure 8(a).
We observe that it is similar to the one shown in the Figure 6(a) albeit it is more
diffuse. In the Figure 8(b) we plot the pressure field at t = 5.4sec. Differently from
before, we can distinguish an elliptic region at the inclusion’s periphery, where the
pressure decreases slower then the central region, indicating that fluid flowed from
the surrounding tissue toward the inclusion, partially replacing the drained fluid. In
Figures 8(c), 8(d) and 8(e) we plot ǫxx(t=5.4sec)−ǫxx(t=0.3sec), ǫyy(t=5.4sec)−ǫyy(t=0.3sec)

and (ǫxx(t=5.4sec)+ǫyy(t=5.4sec))−(ǫxx(t=0.3sec)+ǫyy(t=0.3sec)), respectively. In contrast
to Experiment 1, we can see four lobes in the dilatation field, confirming that some
fluid has percolated around the inclusion in response to the stress concentration.

In the Figure 8(f) we plot the pressure field for t = 10.2sec. In Figure 8(g),
8(h) and 8(i) we plot ǫxx(t=15.0sec) − ǫxx(t=10.2sec), ǫyy(t=15.0sec) − ǫyy(t=10.2sec) and
(ǫxx(t=15.0sec) + ǫyy(t=15.0sec)) − (ǫxx(t=10.2sec) + ǫyy(t=10.2sec)), respectively. We see
that the thin region around the inclusion identified in Figure 6(i) is now (see Figure
8(i)) much thicker. The sample takes about 300sec to relax almost completely. At the
steady state, it assumes the same configuration as in Experiment 1.
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3.4. Experiment 4

This experiment is identical to Experiment 1, except now the lateral surfaces are
permeable (p = 0). In the Figure 9(a), (b) and (c) we plot the pressure field at
t = 0.3, 5.4 and 10.2sec, respectively. We plot the solution in the entire domain
because the only change, when compared with experiment 1, is the appearance of
thin boundary layers along the lateral surfaces. Due to the small interstitial hydraulic
conductivity the effect of the permeable boundary condition is confined to this thin
layer.

4. Discussion

In Experiment 1, we observe that in the first 5 seconds the inclusion relaxes much
more than the surrounding tissue. During this time, its volume reduces by about
4, 000 microstrains. For an inclusion of 1cm diameter this implies displacements of
the order of 40 microns. On the other hand, after the inclusion stops relaxing, the
surrounding tissue relaxation becomes the predominant phenomenon. Since drainage
is the main relaxation mechanism for both inclusion and surrounding, their relaxation
time scales are directly proportional to the respective filtration coefficient values and,
as seen in Equations (B.5)-(B.8), can be roughly estimated by τ = 1 . In terms

χ(λ+2µ)

of the shrinking magnitude resulting from the relaxation, it is directly proportional
to the applied displacement at the boundary. Further, similarly to what is discussed
in Section 2.2, it is also directly proportional to the Poisson’s ratio difference between
incompressible material (0.5) and the solid matrix, i.e., the smaller the solid matrix
Poisson’s ratio, the larger the shrinking.

As in the previous experiment, we see in Experiment 2 that in the first 6 seconds
the inclusion shrinks about 4, 000 microstrains, which, again, for an inclusion of 1 cm

diameter implies displacements of the order of 40 microns.The applied displacement,
the unconfined to confined lateral area ratio and the inclusion solid matrix bulk

modulus determine the shrinking magnitude. In the limit case, where the sample
is completely confined, practically all the sample’s volume reduction resulting from
the applied displacement must be reflected in the inclusion’s volume reduction. We
observed also that after the inclusion relaxes it experiences a gradual swelling, while
the surrounding relaxation takes place. It can be understood by recognizing that the
surrounding tissue shrinks as it relaxes, because its solid matrix is compressible. The
shrinking is partially balanced by the inclusion’s swelling. Again, in the limit case,
where the sample is completely confined, all the shrinking must be balanced by the
inclusion’s swelling.

In Experiment 3, we can observe that raising the interstitial permeability by
a factor of 100 had a very small effect on the spatio-temporal patterns of strain,
especially in the short term. In a comparison with Experiment 1, we observe that
the pressure field is no longer homogeneous inside the inclusion, decreasing from the
periphery toward the center, indicating that part of the drained fluid is being replaced
(at the periphery) by fluid flowing from the surrounding. For the same reason, part
of the surrounding tissue close to the inclusion experiences now a larger dilatation. In
the middle and long terms the impact is larger, especially around the inclusion. There
we could see the dilatation partially “diffusing” from the center of the sample toward
the boundaries. Here, an analogy can be made with what is discussed in Section
2.2, where now the inclusion’s limit plays the role of the open lateral boundaries in
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Figure 2. In a case where the interstitial permeability is as important as (or more
important than) the filtration coefficient, a transient analysis of the problem could
no longer be outlined considering two different time scales - the inclusion’s relatively
short relaxation time and the surrounding tissue’s large relaxation time - despite the
difference between the filtration coefficient inside and outside the inclusion. The whole
sample would relax approximately with the same rate due to the fluid replacement
mechanism discussed above.

The effect of letting the fluid freely flow across the lateral boundaries in
Experiment 4 is imperceptible inside the region of interest investigated in the previous
experiments. In fact, its effect is only felt in a very thin region close to the sample’s
laterals, similarly to what is discussed in Section 2.2. This is, of course, consistent
with the notion that the fluid exchange between compartments is much more important
than the fluid flow within the extravascular compartment. However, in cases where
the interstitial permeability is significant, permeable boundaries become important.

The results suggest that it may be possible to image the interstitial fluid motion
in tissues by measuring the corresponding strain rate. A sequence of images acquired
from ultrasound or other scanners could be processed, as they are in elasticity imaging,
to track the spatio-temporal patterns of elastic strain. In addition, the strain pattern
could then be used to solve for the spatial distribution of the poroelastic parameters,
in particular, the shear modulus µ and the microvascular filtration coefficient χ.

It is interesting to consider the ultrasound measurability of the transient strains
predicted here. In experiment 1, we noted a volume change in the inclusion of about
0.4% after 5 seconds, in an overall compression of 10%. Such a relaxation would
certainly be measurable by ultrasound, though tracking a compression over a full 10%
strain might present technical difficulties. On the other hand, in experiment 2, with
confined compression of 0.3% we noted the same inclusion volume change of 0.4%
over about 6 seconds. The volume change is roughly isotropic in the plane, so about
half that of that, or about 0.2%, would take place in the high resolution (ultrasound
propagation) direction. In practice, it’s likely that the plane strain assumption would
be violated here, and the volume change might be expected to be isotropic in the
volume. In that case, only about 1/3 of the total volume change, or about 0.15%
strain, would be reflected in the high resolution direction. This magnitude of strain,
over 6 seconds, would certainly be a measurable effect.

Whether the magnitudes of the effects predicted here might be seen in clinical
practice depends on the validity of several assumptions. First, these magnitudes
depend on the validity of the parameters chosen for the model. These are selected
as described above, and may be assumed to have large variability in practice. Our
model assumes a linear response to the applied pressure. This implies, among
other limiting situations, that neither the porosity nor permeability will change with
applied pressure. It is likely that this second order effect will indeed remain small
provided the applied pressure in the tissue stays well below the collapse pressure of
the microvasculature. The model neglects all forms of transient solid response that is
not directly related to fluid flow. The magnitude of these possible effects is impossible
to estimate at this time. Finally, the plane strain assumption is taken as analytically
convenient for our purposes, but is not supposed that it is quantitatively accurate.
Quantitative discrepancies between 2D and 3D predictions of as much as 50% might
reasonably be expected, though order of magnitude changes would not be expected.
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5. Conclusions

A poroelastic model that includes the effects of fluid flow and the possibility of
exchange between fluid compartments was used in conjunction with finite element
modeling to predict the effects of fluid flow on the spatio-temporal patterns of soft-
tissue elastic strain under a variety of physiological conditions.

The analytical solution for the problem consisting of a tissue sample in an
unconfined test show two different transient phenomena, percolation and drainage,
controlled by κ̂ and χ̂, respectively. In soft tissues drainage is the dominant
phenomenon.

Numerical simulation results suggest that it may be possible to image the
interstitial fluid motion in tissues by measuring the corresponding strain rate.
Further, they show that the abnormal tumor microvasculature may increase the strain
relaxation rate.

In unconfined tests the total dilatation resulting from the tissue relaxation is
controlled by the Poisson’s ratio difference between incompressible material (0.5) and
the solid matrix, while in partially confined tests it is controlled by the unconfined
to confined lateral area ratio. We didn’t perturb significantly the spatio-temporal
patterns of strain by increasing the interstitial permeability by 100 times, specially
while the inclusion relaxes. The effect of letting the fluid freely flow across the lateral
boundaries is confined to a very thin region close to the sample’s laterals.
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Appendix A. Derivation of field equations

In this section we present a rederivation of the field equations from [5]. Figure 10
represents schematically a portion of soft tissue interstitium. Its boundary and domain
are denoted by Γ and Ω, respectively. The interstitial boundary, Γ is comprised
of three parts: the outer boundary Γo, the interface with the hemal capillaries
Γc, and the interface with the lymphatic capillaries ΓL. We regard the interstitial
compartment as a linear biphasic solid-fluid mixture, where both fluid and solid phases
can move independently of each other. The two phases are treated as intrinsically
incompressible. Thus the total stress in interstitium, σt, is given by:

σt = −pI + λ∇ · uI + 2µ∇
Symu (A.1)

Here λ and µ are the solid matrix Lamé parameters, p is the interstitial fluid pressure,
and u is the displacement of the solid phase. The infinitesimal strain tensor is given
by ǫ = ∇

Symu = 1

2
(∇u+(∇u)T ). Note that, in contrast to the solid phase, the solid

matrix is compressible.
For frequencies and rates of strain which occur physiologically, and under many

clinical applications, the effects of inertia in tissue dynamics may be neglected. Under
this assumption and in the absence of body forces, the resulting momentum equations
for the fluid phase and mixture may be written as ([3] and [7]):

∇ · σf + κ−1ẇ = 0 (A.2)

∇ · σt = 0 (A.3)
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Here, σf = −pI is proportional to the stress in the fluid phase, κ is the interstitial
permeability, and w is volume average relative fluid displacement (relative to the
solid matrix). Equation (A.2) is a statement of Darcy’s law for the fluid flow through
the interstitium, while equation (A.3) is a statement of conservation of total linear
momentum.

For a biphasic material with incompressible phases, the equations (A.1), (A.2)
and (A.3) are augmented by the incompressibility constraint for the fluid phase:

∇ · u̇ + ∇ · ẇ = 0 (A.4)

To bring out explicitly the effects of the vascularization, we shall average (A.4) over an
elementary “averaging volume”, that is, a small volume (typically O(1mm3)), which
is large enough to contain a sufficiently large number of microvessels that the averages
below become sensibly stationary.

To that end, we integrate (A.4) over Ω, our averaging volume:

∇ · u̇ dV + ∇ · ẇ dV = 0. (A.5)
Ω Ω

We apply the divergence theorem to the second term in equation (A.5) to obtain:
∫ ∫ ∫ ∫

∇ · u̇ dV + n · ẇ dS + n · ẇ dS + n · ẇ dS = 0. (A.6)
Ω Γ0 Γc ΓL

Here, we recall that divided the total boundary of the interstitial space into three
parts, the external boundary Γ0, the (hemal) capillary surface Γc, and the lymphatic
capillary surface, ΓL.

The last two terms in equation (A.6) represent fluid fluxes into the microvessels.
As such, they can be related to the pressure difference across the microvessel wall
through Starling’s law applied to both classes of microvessels:

Jc = Lp(pv − p) (A.7)

JL = LpL(pL − p) (A.8)

Here J is the volume fluid flux out of the vessel, Lp represents the hydraulic
conductivity of the microvessel wall, and the subscripts c and L denote hemal
capillaries and lympthatic capillaries, respectively. pv and pL thus represent the hemal
capillary and lymphatic capillary pressures, respectively.

Using equations (A.7) and (A.8) allows us to make the following approximations:

n · ẇ dS ≈ LpSv (p − pv) (A.9)
Γc

n · ẇ dS ≈ LpLSL (p − pL) (A.10)
ΓL

Here, Sv and SL are the total surface areas of the two classes of microvessels within
the averaging volume, Ω.

Further, ensemble averaging the first and second terms of (A.6) over all
representative realizations of the microvasculature yields:

∇ · u̇ dV ≈ V ∇· < u̇ > (A.11)
Ω

n · w dS ≈ n· < w > dS = ∇· < ẇ > dV = V ∇· <(A.12)˙˙ ˙ w >
Γ0 Γ0 Ω
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Angle brackets in (A.11) and (A.12) represent ensemble averages. We now drop the
angle brackets with the understanding that all symbols represent quantities averaged
over the microstructure. V is the volume of Ω.

We now use (A.9-A.12) in (A.5) to write:

∇ · u̇ + ∇ · ẇ + χv (p − pv) + χL (p − pL) = 0 (A.13)

LpSv
χv = (A.14)

V
LpLSL

χL = (A.15)
V

Equation (A.13) is identical to Equation 4 in [5] with appropriate reinterpretation
of average fluid and solid displacements. At normal physiological conditions, where
pV > p > pL, χV (pV − p) and χL(p − pL) represent the transcapillary flow and the
lymphatic drainage, respectively.

Transcapillary exchange and lymphatic drainage can be expected to be taking
place continuously in living tissues. Under these “steady state operating conditions,”
p and w will in general be nonzero. Therefore, we let

u = uss + ũ (A.16)

ẇ = ẇss + ẇ̃ (A.17)

p = pss + p̃ (A.18)

pv = pv
ss + p̃v (A.19)

pL = pL
ss + p̃L (A.20)

where, uss is the (temporally) constant steady state part of u, and ũ is its (temporally)
fluctuating part.

Then equations (A.1), (A.2), (A.3) and (A.13) remain valid with u replaced by
ũ, p replaced by p̃, etc. In particular, in the special case p̃v = p̃L = 0, equation (A.13)
becomes

∇ · u̇̃ + ∇ · ẇ̃ + χ p̃ = 0. (A.21)

Here, χ = χv + χL is the total microvascular filtration coefficient.
Substituting equation (A.21) into (A.2) and dropping the tildes yields equation

(1). Substituting equation (A.1) into (A.3), using equations (A.16-A.20) and dropping
the tildes gives equation (2).

Appendix B. One dimensional analytical solution

Under the assumptions outlined in section 2.1.1, we find that the pressure and
lateral displacement are both independent of the vertical coordinate, i.e. p = p(x, t)
and ux = ux(x, t). Further, the lateral normal stress vanishes, i.e.

xx
= 0.σt

Finally, for a step function applied displacement, the vertical displacement is simply
uy = uy(y, t) = −u0H(t)(

h

y ), where H(t) is the step function. Thus the problem
reduces to a 1D problem and Equations (??) and (??) reduce to:

du̇x d2p
− κ + χp = 0 (B.1)

dx dx2

dp d2ux
− (λ + 2µ) = 0 (B.2)

dx dx2
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duy −u0Integrating Equation (B.2) over x and using Equation (??) (note that
dy

=
h

),
gives:

dux u0
p − (λ + 2µ) = −λ (B.3)

dx h

Taking the time derivative of Equation (B.3) and using it in Equation (B.1), yields

d2p
ṗ − κ̂ + χ̂p = 0 (B.4)

dx2

Here we have introduced the symbols κ̂ = κ(λ + 2µ) and χ̂ = χ(λ + 2µ).
Equation (B.4) can then be solved using separation of variables to obtain:

∞

4µu0 βn −γntp(x, t) = ( ) sin(αnx)e (B.5)
Lh αn

n=1

nπ
where αn = , βn = 1 − (−1)n and γn = α

n

2 κ̂ + χ̂. Using Equation (B.3) and the
L

fact that ux = 0 at x = L

2
, for all time gives:

λu0L L
ux(x, t) = (x − )

h(λ + 2µ) 2
∞

4µu0 βn nπ
−γnt

− (cos(αnx) − cos( ))e (B.6)
Lh(λ + 2µ) α

n
2 2

n=1

To extend the solution to a case where a ramp function is applied, we take
advantage of the fact that a ramp is the integral of the step function. Therefore
we integrate Equations (B.5) and (B.6) from t = 0 to t = t1. This yields:



 4aµ
∞

βn 1 − e−γnt



 ( ) sin(αnx) , t ≤ t1

 Lh αn γn

p(x, t) =
inf

n=1

γn(t1−t) −γnt
(B.7)

 4aµ ∑ βn e − e





( ) sin(αnx) , t > t1

 Lh αn γn
n=1

and




L
 λâ(x − )t − Δ1n , t ≤ t1

ux(x, t) = L
2 (B.8)



 λâ(x − )t − Δ2n , t > t1
2

where
∞

4µâ ∑ βn nπ 1 − e−γnt

Δ1n = (cos(αnx) − cos( )) (B.9)
L α

n
2 2 γn

n=1

∞ γn(t1−t) −γnt4µâ ∑ βn nπ e − e
Δ2n = (cos(αnx) − cos( )) (B.10)

L α2 2 γn
n=1

n

a at , t ≤ t1and â = , for an applied displacement given by uy = .
h(λ + 2µ) at1 , t > t1
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Figure captions

Fig. 1 A rectangular homogeneous tissue sample in an unconfined compression test.
The sample has dimensions of L × h and fluid can flow freely across the lateral
boundaries (p = 0), which are also traction free. The fluid cannot flow across
the top and bottom boundaries, which are also shear stress free (slip boundary
conditions). uy = 0 at the bottom while a displacement step (or ramp) function
is applied at the top.

Fig. 2 The solution for Equation (B.7), at t = 0.3sec, t = 5.4sec and t = 9.9sec, for
L = 10cm, h = 10cm, a = 1cm and t1 = 0.3sec. For the blue line, the poroelastic

0.3sec

parameters are chosen such that the fluid exchange between compartments is the
dominant phenomenon. These parameters are listed in Table I and correspond to
the inclusion in Experiment 1. For the red line, we increase κ 10000 times and
decrease χ 1000 times.

Fig. 3 The strain field, ǫxx, at t = 5.4sec, for both cases shown in Figure 3. In (a), in
agreement with the pressure field, we see that the strain is approximately constant
along almost the whole sample, indicating that the percolation is negligible outside
the very thin boundary layers located at the sample laterals. In (b) we see that
the strain varies with x, indicating that percolation is important.

Fig. 4 Experiment 1. The circular inclusion has 1cm diameter and the sample has
dimensions 10cm×10cm. The fluid cannot flow across the boundaries. The tissue
is fixed at the bottom, where ux=uy=0. The lateral surfaces are traction free. At
the top, we simulate the mechanical loading from a compressor of 5cm of width.
The displacement of the compressor is modeled by a ramp function such that
the prescribed uy goes from 0 to 1cm in 0.3sec, in the region corresponding to
x = 2.5cm to x = 7.5cm. Bellow the compressor we prescribe zero shear stress
(τyx).

Fig. 5 Experiment 2. The circular inclusion has 1cm diameter and the sample has
dimensions of 10cm× 10cm. The fluid cannot flow across the boundaries and the
tissue is fixed at the bottom. The model is completely confined at the top, where
uy goes from 0 to 0.03cm in 0.3sec, and is partially confined on the sides from
y = 2.0cm to y = 10cm, while it is traction free from y = 0.0cm to y = 2.0cm.
The goal is to reproduce a situation of partial confined test.

Fig. 6 (a) The pressure field (KPa) at t = 0.3sec. (b) The pressure field (KPa)
at t = 5.4sec. (c) ǫxx(t=5.4sec) − ǫxx(t=0.3sec). (d) ǫyy(t=5.4sec) − ǫyy(t=0.3sec).
(e) (ǫxx(t=5.4sec) + ǫyy(t=5.4sec)) − (ǫxx(t=0.3sec) + ǫyy(t=0.3sec)). (f) The pressure
field (KPa) at t = 10.2sec. (g) ǫxx(t=15.0sec) − ǫxx(t=10.2sec). (h) ǫyy(t=15.0sec) −

ǫyy(t=10.2sec). (i) (ǫxx(t=15.0sec) + ǫyy(t=15.0sec)) − (ǫxx(t=10.2sec) + ǫyy(t=10.2sec)).
Comparing (a) and (b) shows that the inclusion relaxes much faster than
the surrounding tissue due to the higher value of the microvascular filtration
coefficient. In (e) we see that in the first 5 seconds the inclusion shrinks as it
relaxes, while the volume of the surrounding tissue remains almost unchanged
(dilatation ≈ 0). In (i) we see that from t = 10.2sec to t = 15.0sec both the
inclusion and the surrounding tissue relax by similar amounts.

Fig. 7 (a) The pressure field (KPa) at t = 0.3sec. (b) The pressure field (KPa)
at t = 6.3sec. (c) ǫxx(t=6.3sec) − ǫxx(t=0.3sec). (d) ǫyy(t=6.3sec) − ǫyy(t=0.3sec).
(e) (ǫxx(t=6.3sec) + ǫyy(t=6.3sec)) − (ǫxx(t=0.3sec) + ǫyy(t=0.3sec)). (f) The pressure
field (KPa) at t = 13.5sec. (g) ǫxx(t=31.5sec) − ǫxx(t=13.5sec). (h) ǫyy(t=31.5sec) −
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ǫyy(t=13.5sec). (i) (ǫxx(t=31.5sec) + ǫyy(t=31.5sec)) − (ǫxx(t=13.5sec) + ǫyy(t=13.5sec)).
In (e) we see that the shrinking during the inclusion relaxation is similar to the
previous case. In (i) we see that from t = 13.5sec to t = 31.5sec the inclusion
swells while the surrounding tissue shrinks. In fact, the inclusion attains its
smallest volume at approximately t = 13.5sec.

Fig. 8 (a) The pressure field (KPa) at t = 0.3sec. (b) The pressure field
(KPa) at t = 5.4sec. (c) ǫxx(t=5.4sec) − ǫxx(t=0.3sec). (d) ǫyy(t=5.4sec) −

ǫyy(t=0.3sec). (e) (ǫxx(t=5.4sec) + ǫyy(t=5.4sec)) − (ǫxx(t=0.3sec) + ǫyy(t=0.3sec)). (f)
The pressure field (KPa) at t = 10.2sec. (g) ǫxx(t=15.0sec) − ǫxx(t=10.2sec). (h)
ǫyy(t=15.0sec) − ǫyy(t=10.2sec). (i) (ǫxx(t=15.0sec) + ǫyy(t=15.0sec)) − (ǫxx(t=10.2sec) +
ǫyy(t=10.2sec)). In (e) we observe that the spatio-temporal patterns of strain
isn’t perturbed significantly during the inclusion relaxation by increasing the
interstitial permeability by 100 times. We see in (i) that the thin region around
the inclusion identified in Figure 6(i) is now much thicker, indicating percolation.

Fig. 9 (a) The pressure field (KPa) at t = 0.3sec. (b) The pressure field (KPa)
at t = 5.4sec. (c) The pressure field (KPa) at t = 10.2sec. Due to the
small interstitial hydraulic conductivity, the effect of the permeable boundary
is imperceptible inside the region of interest, being confined to a very thin layer
located at the lateral surfaces.

Fig. 10 A portion of soft tissue. Its boundary and volume are represented by Γ and
Ω, respectively. Its total volume, Ω, is divided into three different compartments:
the interstitial compartment, the hemal vascular compartment and the lymphatic
vascular compartment. The interstitial compartment is itself a biphasic solid-fluid
mixture, where both fluid and solid phases can move independently of each other.

Tab. 1 Poroelastic parameters used in simulations.
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